
 

Demo of ExtractFix 
 
This document contains instructions for obtaining and executing a demo version of ExtractFix.  
 
Please note the following: 
 

1. This is an incomplete demo version of ExtractFix. The demo is primarily designed for 
testing purposes, and does not reflect the final design of ExtractFix. 

2. The demo should be considered alpha-quality software. 
3. The demo is distributed via a Docker image (the size is around 6.5GB). 

 

Description 

 
In ExtractFix, the main components, such as Propagation Engine, are mainly implemented 
using C/C++, and linked using Python. The executable of ExtractFix is ExtractFix.py. The 
basic usage of the demo tool is as follows: 
 
Usage: ExtractFix.py [-h] -s SOURCE_PATH -t TESTS [TESTS ...] -c RUN_COMMAND -b 

BUG_TYPE -n BINARY_NAME [-v] 

 
Optional arguments: 

  -h, --help                       show this help message and exit 

  -s SOURCE_PATH, --source-path SOURCE_PATH 

                                        the path of the project 

  -t TESTS [TESTS ...], --tests TESTS [TESTS ...] 

                                        the test input 

  -c RUN_COMMAND, --run-command RUN_COMMAND 

                                        the command to compile the target program 

  -b BUG_TYPE, --bug-type BUG_TYPE 

                                       type of the crash/vulnerability (supported type:  

                                             [buffer_overflow, integer_overflow, null_pointer, 

                                              assertion_failure, divide_by_0, api_specific]) 

  -n BINARY_NAME, --binary-name BINARY_NAME 

                                       the binary name 

  -v, --verbose                show debug information 

 
 

Run the Demo 
 
In order to run the ExtractFix demo, please create a temporary docker container using the 
following command: 
 

        $ docker run --rm -ti gaoxiang9430/extractfix:demo /bin/bash 

 

The docker image will be automatically downloaded from docker hub and a docker container 
will be created by executing a bash shell. Once the shell is launched, execution the following 
commands to run the demo: 
 
        # cd ExtractFix 
        # source setup.sh           ### this is used to setup the environment variables. 
        # cd build 
        # ./ExtractFix.py -s ../demo/libtiff-5321 -t test_case -c driver -b buffer_overflow -n tiffcrop -v 



 

The above command will try to fix the buffer overflow in demo/libtiff-5321, and that can be 
triggered by demo/libtiff-5321/test_case. 
 

Output 
 
ExtractFix will output the generated patch and some intermedia results. 
 
In the /ExtractFix/demo/result0 directory, there are three files: 
 

 constraints.txt: the constraints provided by KLEE 

 fix_stm.txt: the statement that is patched 

 patch: the generated patch (which includes some noises caused by instrumentation) 
 
While /ExtractFix/demo/logs provides all the intermedia results: 
 

 cfc: the crash free constraints generated by Sanitizer 

 fixlocalization.json: the fix localization results 
 
The generated patch in this example is: 
 
 992c994 
 <       for (s = 0; s < spp; s++) 
 --- 
 >       for (s;(((s)<(spp))&&((s)<=(7))); s++) 


